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Abstract. It is shown that the exact dynamics of a composite quantum system can be represented through
a pair of product states which evolve according to a Markovian random jump process. This representation
is used to design a general Monte Carlo wave function method that enables the stochastic treatment of
the full non-Markovian behavior of open quantum systems. Numerical simulations are carried out which
demonstrate that the method is applicable to open systems strongly coupled to a bosonic reservoir, as well
as to the interaction with a spin bath. Full details of the simulation algorithms are given, together with an
investigation of the dynamics of fluctuations. Several potential generalizations of the method are outlined.

PACS. 03.65.Yz Decoherence; open systems; quantum statistical methods – 02.70.Ss Quantum Monte
Carlo methods – 05.10.Gg Stochastic analysis methods (Fokker-Planck, Langevin, etc.)

1 Introduction

A great deal of the dynamics of open systems can be de-
scribed, to a reasonable degree of accuracy, by Markovian
quantum master equations. Important examples are given
by the weak-coupling interaction of radiation with mat-
ter in atomic physics and quantum optics [1,2]. How-
ever, non-Markovian quantum dynamics [3–6] is known
to play a significant role in many applications of the the-
ory of open quantum systems [7] currently under dis-
cussion in the literature, e.g. the dynamics of the atom
laser [8], environment-induced decoherence at low tem-
peratures (for an example, see [9]), and quantum devices
interacting with a spin bath [10].

Quantum Monte Carlo techniques have been shown to
provide efficient numerical tools for the treatment of the
dynamics of open systems in the Markovian regime [11].
In these techniques one constructs a stochastic dynam-
ics for the open system’s state vector ψ(t) such that the
reduced density matrix ρS(t) of the open system is re-
covered through the expression ρS(t) = E(|ψ(t)〉〈ψ(t)|),
where E denotes the expectation value or ensemble aver-
age of the underlying process. This is the standard Monte
Carlo wave function method which has been widely used
in many physical problems of quantum optics and con-
densed matter theory.
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The idea of the Monte Carlo wave function method
can be extended to the treatment of non-Markovian quan-
tum processes which cannot be described by a Markovian
quantum master equation. One such method [12] is based
on a stochastic integro-differential equation for the wave
function involving a non-local retarded memory kernel.
The solution of non-local equations of motion can be cir-
cumvented by employing a pair ψ1(t), ψ2(t) of random
wave functions of the open system and by expressing the
reduced density matrix with the help of the mean value
ρS(t) = E(|ψ1(t)〉〈ψ2(t)|) [13]. This method of propagat-
ing a pair of wave functions requires the construction of an
appropriate time-local non-Markovian master equation.
Such an equation can be obtained with the help of the
time-convolutionless (TCL) projection operator technique
which leads to a systematic perturbation expansion for the
time dependent generator of the master equation. How-
ever, for strong system-environment couplings calculations
based on the TCL expansion become extremely compli-
cated and the derivation of an appropriate TCL generator
of high order is, in general, not feasible in practice. A
further possibility is to use an explicit expression for the
influence functional of the open system to obtain stochas-
tic differential equations for a pair of random wave func-
tions [14]. This method is, however, restricted to Gaussian
reservoirs and linear dissipation.

In this paper the details of a new method proposed
in [15] are presented, which allows to attack the problem
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of non-Markovian quantum evolution by means of a Monte
Carlo wave function technique. The basic idea is to intro-
duce a pair |Φ1(t)〉, |Φ2(t)〉 of random states of the to-
tal system, with the aim of a stochastic formulation of
the exact von Neumann dynamics of the composite sys-
tem. A similar idea has been used recently to construct
an exact diffusion process for a pair of one-particle wave
functions describing systems of identical Bosons [16] and
Fermions [17]. Here, the state vector dynamics is assumed
to represent a piecewise deterministic process (PDP).
This is a Markovian jump process with smooth, deter-
ministic evolution periods between successive jumps. The
stochastic states of the total system are supposed to be
tensor product states of the form |Φ1〉 = ψ1 ⊗ χ1 and
|Φ2〉 = ψ2 ⊗ χ2. The method thus involves four stochas-
tic state vectors, namely a pair ψ1, ψ2 of state vectors of
the open system, and a pair χ1, χ2 of state vectors of the
environment. The open system’s reduced density matrix
can then be represented in terms of the expectation value

ρS(t) = E (|ψ1(t)〉〈ψ2(t)|〈χ2(t)|χ1(t)〉) . (1)

Contrary to the standard methods mentioned above, this
representation employs an average over the product of two
quantities: the dyadic |ψ1〉〈ψ2| of a pair of state vectors of
the open system, and the scalar product 〈χ2|χ1〉 of a corre-
sponding pair of environment states. It will be shown that
this representation allows to design a Markovian stochas-
tic process which unravels the full non-Markovian behav-
ior of the reduced density matrix.

The paper is structured as follows. Section 2 contains
the general construction of the PDP representing the exact
von Neumann dynamics of the composite system, an inves-
tigation of the dynamics of the fluctuations of the stochas-
tic process, as well as a detailed description of the Monte
Carlo algorithm of the open system dynamics. The exam-
ple of the non-perturbative decay of a two-state system
into a bosonic reservoir is discussed in Section 3. This sec-
tion contains numerical simulations of the non-Markovian
dynamics of the decay into a reservoir in the regime of
strong couplings and corresponding long memory times.
The quantum dynamics of a specific spin bath model is
investigated in Section 4. This model describes the inter-
action of a single electron spin in a quantum dot with
an external magnetic field and a bath of nuclear spins.
Section 5 contains the conclusions and indicates various
potential generalizations of the stochastic method.

2 General formulation of the method

2.1 Construction of the PDP

We investigate the general situation of an open system
with underlying Hilbert space HS , which is coupled to an
environment with Hilbert space HE . The state space of the
composite, total quantum system is given by the tensor
product HS ⊗HE . Working in the interaction picture we
write the Hamiltonian describing the system-environment

interaction as

HI(t) =
∑

α

Aα(t) ⊗ Bα(t). (2)

The Aα(t) and the Bα(t) are interaction picture operators
acting in HS and HE , respectively. The evolution of the
density matrix ρ(t) of the total system is then governed
by the von Neumann equation (� = 1),

d

dt
ρ(t) = −i[HI(t), ρ(t)]. (3)

Our central goal is to construct a representation of ρ(t) in
terms of the expectation value

ρ(t) = E(|Φ1(t)〉〈Φ2(t)|), (4)

which is determined through a pair |Φ1(t)〉, |Φ2(t)〉 of
stochastic state vectors of the composite quantum system.
Equivalently, one may define the quantity

R(t) = |Φ1(t)〉〈Φ2(t)|, (5)

which is a random operator on HS ⊗ HE , and write the
density matrix as the mean value of this operator, that is
ρ(t) = E(R(t)).

In the following we suppose that the stochastic state
vectors |Φν(t)〉 (ν = 1, 2) introduced in equation (4) are
direct products of certain system states ψν(t) ∈ HS and
environment states χν(t) ∈ HE , that is we have

|Φν(t)〉 = ψν(t) ⊗ χν(t), ν = 1, 2. (6)

The reduced density matrix ρS(t) of the open system
is defined through the partial trace over the variables
of the environment, ρS(t) = trEρ(t). In view of equa-
tions (4) and (6) this definition immediately leads to the
relation (1).

It is important to realize that a representation of the
form given in equations (4) and (6) is possible for any
initial state ρ(t = 0). This means that any given density
matrix ρ ≡ ρ(0) of the composite quantum system can be
written as the mean value ρ = E(|Φ1〉〈Φ2|), in which the
random states |Φν〉 are direct products of the form (6). In
particular, it is not necessary to demand that ρ describes
an initial state without system-environment correlations.

A formal proof of this statement may be carried out
as follows. One first observes that a sequence of pairs
(|Φλ

1 〉, |Φλ
2 〉) of state vectors, which occur with correspond-

ing probabilities pλ, gives rise to the expectation value

ρ = E(|Φ1〉〈Φ2|) =
∑

λ

pλ|Φλ
1 〉〈Φλ

2 |. (7)

Of course, pλ provides a probability distribution satisfying
pλ ≥ 0 and

∑
λ pλ = 1. Introducing new states through

the relation |Ψλ
ν 〉 =

√
pλ|Φλ

ν 〉, we can write

ρ =
∑

λ

|Ψλ
1 〉〈Ψλ

2 |. (8)
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Thus, to prove the above statement we have to show that
any given density matrix ρ of the composite quantum sys-
tem can be brought into the form (8), whereby the |Ψλ

ν 〉
must be direct products. To demonstrate that this is in
fact possible we introduce an ON-basis {ψi} in HS and
an ON-basis {χn} in HE and write the given ρ as follows,

ρ =
∑

ijnm

ρijnm|ψi〉〈ψj | ⊗ |χn〉〈χm|, (9)

where

ρijnm ≡ 〈ψiχn|ρ|ψjχm〉 ≡ |ρijnm|e2iϕijnm .

Next, one introduces a collective index λ = (ijnm) and
defines the states

|Ψλ
1 〉 =

√
|ρijnm|e+iϕijnmψi ⊗ χn, (10)

|Ψλ
2 〉 =

√
|ρijnm|e−iϕijnmψj ⊗ χm, (11)

which allow one to write equation (9) in the desired
form (8). This completes the proof since the states (10)
and (11) are indeed direct products.

The aim is now to construct an appropriate stochas-
tic process for the state vectors |Φν(t)〉 which exactly re-
produces the von Neumann equation (3) through the ex-
pectation value (4). As mentioned in the introduction we
suppose that the time evolution represents a piecewise de-
terministic process (PDP). A convenient way of formu-
lating a PDP is to write stochastic differential equations
for the random variables. The foundations of the calculus
of PDPs and its applications to the quantum theory of
open systems may be found in [7]. In view of the repre-
sentation (6) the stochastic dynamics can be defined in
terms of stochastic differential equations for the state vec-
tors ψν(t) and χν(t),

dψν(t) = Fνdt+ dJν , (12)

dχν(t) = Gνdt+ dKν . (13)

These equations reflect the general structure of a PDP:
the terms Fνdt and Gνdt represent the deterministic evo-
lution periods, the drift of the process, while the terms dJν

and dKν provide the contributions from the random, in-
stantaneous jumps of the process. These jump contribu-
tions are taken to be of the form

dJν =
∑

α

(−iLανAα − I)ψνdNαν(t), (14)

dKν =
∑

α

(MανBα − I)χνdNαν(t). (15)

Here, I denotes the identity operator and Lαν , Mαν are
c-number functionals which will be specified below. The
quantities dNαν(t) are known as Poisson increments. They
are independent, random numbers which take on the pos-
sible values 0 or 1 and satisfy the relation

dNαν(t)dNβµ(t) = δαβδνµdNαν(t). (16)

Under the condition that dNαν(t) = 1 for a particular α
and ν the other Poisson increments therefore vanish and,
by virtue of equations (14) and (15), the state vectors then
carry out the instantaneous jumps

ψν −→ −iLανAαψν , χν −→MανBαχν . (17)

The expectation values of the Poisson increments are
given by

E(dNαν(t)) = Γανdt. (18)

This implies that dNαν(t) = 1 with probability Γανdt
and, hence, the jumps (17) occur at a rate Γαν , which
will also be determined below. If, on the other hand, all
Poisson increments vanish we have dψν(t) = Fνdt and
dχν(t) = Gνdt, which means that the state vectors follow
the deterministic drift during dt.

Our next step consists in deriving a stochastic equa-
tion for the random operator R(t) defined in equation (5),
which will then lead to an equation of motion for the ex-
pectation value (4). Employing the calculus of PDPs one
finds

dR = |dΦ1〉〈Φ2| + |Φ1〉〈dΦ2| + |dΦ1〉〈dΦ2|.
The third term on the right-hand side of this equation in-
volves the products dNα1dNβ2 of the Poisson increments,
which vanish by virtue of equation (16). This means that
the state vectors |Φ1(t)〉 and |Φ2(t)〉 evolve independently
and that we may write

dR = |dΦ1〉〈Φ2| + |Φ1〉〈dΦ2|. (19)

With the help of the stochastic differential equations (12)
and (13) the state vector increments are found to be

|dΦν〉 = dψν ⊗ χν + ψν ⊗ dχν + dψν ⊗ dχν

= (Fνdt+ dJν) ⊗ χν + ψν ⊗ (Gνdt+ dKν)

+dJν ⊗ dKν .

On using the structure of the jump terms (14) and (15)
and relation (16) the third term may be written

dJν ⊗ dKν =
∑

α

(−iLανAα − I)ψν

⊗ (MανBα − I)χνdNαν

= −dJν ⊗ χν

+
∑

α

(−iLανAα − I)ψν

⊗MανBαχνdNαν ,

which leads to

|dΦν〉 = Fνdt⊗ χν

+ψν ⊗
(
Gνdt−

∑

α

dNανχν

)

−i
∑

α

LανMαν(Aαψν) ⊗ (Bαχν)dNαν . (20)
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This equation provides an exact relation for the stochastic
increments |dΦν〉. To ensure that the first and the second
term on the right-hand side vanish when taking the aver-
age over the Poisson increments, we now set

Fν ≡ 0, Gν ≡ Γνχν , (21)

where
Γν ≡

∑

α

Γαν , (22)

and
Γαν ≡ 1

LανMαν
· (23)

This yields the expression

|dΦν〉 = ψν ⊗
(
Γνdt−

∑

α

dNαν

)
χν

−i
∑

α

Γ−1
αν (Aαψν) ⊗ (Bαχν)dNαν . (24)

Finally, we substitute (24) into (19) to arrive at

dR(t) = −i[HI(t), R(t)]dt+ dS(t). (25)

Equation (25) is the desired exact stochastic equation
of motion of the random operator R(t). The drift term
involves the commutator with the interaction Hamilto-
nian HI(t), while the noise term is given by the stochastic
increment

dS(t) = dT1R(t) +R(t)dT †
2 , (26)

with

dTν =
∑

α

(Γανdt− dNαν)
(
I + iΓ−1

αν AαBα

)
. (27)

According to equations (18) and (27) the average over
the Poisson increments yields E(dTν) = 0. By virtue of
equation (26) this gives E(dS) = 0. Thus, if we take the
average of both sides of equation (25) we are led directly
to the von Neumann equation (3). This shows that on
average the stochastic dynamics defined by the differen-
tial equations (12) and (13) indeed reproduces the exact
von Neumann dynamics of the density matrix of the com-
bined system. We have thus achieved the goal of construct-
ing a stochastic formulation of the evolution of the total
system by means of a Markovian piecewise deterministic
process.

Up to this point the quantities Lαν and Mαν are com-
pletely arbitrary with the only restriction that Γαν ≥ 0
(see Eq. (23)), which guarantees that the expectation val-
ues E(dNαν) are positive, as it should be for random
Poisson increments (see Eq. (18)). In the following we
choose

Lαν =
||ψν ||

||Aαψν || , Mαν =
||χν ||

||Bαχν || · (28)

The advantage of this choice is that the jumps described
by equation (17) then conserve the norm of the stochastic

state vectors ψν and χν . Summarizing, the stochastic dif-
ferential equations defining the PDP now read as follows,

dψν =
∑

α

( −i||ψν ||
||Aαψν ||Aα − I

)
ψνdNαν(t), (29)

dχν = Γνχνdt

+
∑

α

( ||χν ||
||Bαχν ||Bα − I

)
χνdNαν(t), (30)

where Γν is given by equation (22) and by

Γαν =
||Aαψν || × ||Bαχν ||

||ψν || × ||χν || · (31)

We observe that ψν(t) is a pure, norm-conserving jump
process, while χν(t) is a PDP with norm-conserving jumps
and a linear drift which leads to a monotonic increase of
the norm of χν .

2.2 Dynamics of fluctuations

As a measure of the size of the fluctuations of the stochas-
tic process constructed above we define [16]

D2(t) ≡ E
(||R(t) − ρ(t)||2)

= E
(
tr

{
[R(t) − ρ(t)]† [R(t) − ρ(t)]

})
. (32)

The quantity D(t) is thus the root mean square dis-
tance from the stochastic operator R(t) to its mean value
ρ(t) = E(R(t)). The distance is determined through the
Hilbert-Schmidt norm ||A|| =

√
tr{A†A}, where the trace

is taken over the Hilbert space of the total system. Equa-
tion (32) may be written as

D2(t) = E
(
tr

{
R†(t)R(t)

}) − trρ2(t). (33)

Since the dynamics of ρ(t) represents a unitary transfor-
mation the trace over the square of ρ(t) is constant in time.
For a pure initial state ρ(0) we have trρ2 ≡ 1. Moreover,
in the case of a sharp initial state, that is for R(0) = ρ(0),
one finds that D2(0) = 0.

Our aim is to estimate the size of the fluctuations.
To this end we first derive a differential equation for the
mean square distance D2(t). With the help of the stochas-
tic equation of motion (25) and of definition (26) the dif-
ferential of D2(t) is found to be

dD2 = E
(
tr

{
dS†dS

})

= E
(
tr

{
dT †

1dT1RR
† + dT †

2dT2R
†R

})
. (34)

Using then the definition (27) of the quantities dTν as well
as equations (5), (16) and (18), we obtain

dD2

dt
= E

(
∑

αν

Γαν

|| (I + iΓ−1
αν AαBα

) |Φν〉||2
|| |Φν〉||2 tr

{
R†R

}
)
.
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The choice (28) finally yields

dD2

dt
= 2E

(
∑

ν

Γνtr
{
R†R

}
)
. (35)

Equation (35) is an exact differential equation for the fluc-
tuations of the random process. To find a rough estimate
of the size of the fluctuations we suppose that the rates Γν

are bounded from above, that is Γν ≤ Γ0. This leads to
the inequality

dD2

dt
≤ 4Γ0

(
D2 + trρ2

)
, (36)

which, on integrating, gives

D2(t) ≤ (
trρ2

) (
e4Γ0t − 1

)
+D2(0)e4Γ0t. (37)

This inequality provides a strict upper bound of the fluctu-
ations of the random process. We note that the right-hand
side of (37) is finite for any finite time t. This leads to the
important conclusion that the fluctuations of the process
are finite for all finite times.

Let us discuss in more detail the case of a sharp initial
state, that is D2(0) = 0. We observe that for small times
satisfying 4Γ0t 
 1 the root mean square distance then
increases at most as the square root of time,

D(t) ≤
√

(trρ2)4Γ0t. (38)

For large times, 4Γ0t� 1, the root mean square distance
may increase, however, exponentially with time,

D(t) ≤
√

trρ2e2Γ0t. (39)

This shows that the stochastic method is useful for short
and intermediate times, where the relevant time scale is
given by 1/2Γ0. One further expects that the method is,
in general, not efficient numerically for times which are
large compared to 1/2Γ0, because of a possible exponen-
tial increase of the fluctuations in this regime. It must
be emphasized, however, that the statistical errors can be
reduced considerably by employing the statistical inde-
pendence of the increments |dΦν〉 (see Sect. 2.3.2), or by
using a more complicated ansatz for the structure of the
stochastic states (see Sect. 5). It should also be noted that
the statistical errors are often much smaller than the up-
per bound given in the inequality (39). An example will
be discussed in Section 4.2.

Similar conclusions on the growth of statistical errors
have been obtained for the Monte Carlo wave function
method of many-body systems [16,17] and for the stochas-
tic simulation technique based on the positive P represen-
tation [18], which has been applied, for example, to the
study of Bose-Einstein condensates [19,20]. It should be
noted, however, that the method proposed here guarantees
that fluctuations are finite for finite times and that a di-
vergence of the norm of the random wave functions within
finite time does not occur, as it happens for the stochastic
schemes using the constraint of a constant trace [21].

2.3 The stochastic simulation method

2.3.1 Numerical algorithm

The stochastic simulation method consists in a numerical
Monte Carlo simulation of the stochastic differential equa-
tions (29) and (30). A realization ψν(t), χν(t) of the pro-
cess can be generated by means of the following algorithm.

1. Suppose that the last jump into states ψν(t), χν(t) oc-
curred at some time t. In the case that t is the ini-
tial time t = 0, these states are taken to be the initial
states which must be drawn from the probability distri-
bution representing the initial density matrix through
ρ(0) = E(R(0)).

2. The next jump takes place at time t+ τ , where the τ is
a stochastic time step, the random waiting time, which
is to be determined from the cumulative waiting time
distribution function

F (τ) = 1 − exp
(
−

∫ t+τ

t

dsΓν(s)
)
. (40)

A random number τ following this distribution can be
generated, for example, by drawing a uniform random
number η ∈ (0, 1) and by solving the equation

η = exp
(
−

∫ t+τ

t

dsΓν(s)
)

(41)

for τ . In between the previous and the next jump, that
is within the time interval [t, t+ τ ] the realization fol-
lows the deterministic drift which is given by

ψν(t′) = ψν(t), (42)

χν(t′) = χν(t) exp

(∫ t′

t

dsΓν(s)

)
, (43)

where t ≤ t′ ≤ t+ τ .
3. Select a particular jump, that is select a particular

value of the index α with probability

pαν =
Γαν(t+ τ)∑
α Γαν(t+ τ)

· (44)

The corresponding jumps of the state vectors at time
t+ τ then amount to the replacements

ψν −→ −i||ψν ||
||Aαψν ||Aαψν , (45)

χν −→ ||χν ||
||Bαχν ||Bαχν . (46)

Repeating these three steps until the desired final time tf
is reached on obtains a realization ψν(t), χν(t) of the pro-
cess over the whole time interval [0, tf ]. An important fea-
ture of this algorithm is that it works with a random time
step the size of which is adapted automatically by the
algorithm: for large rates the time steps become small,
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while small rates lead to an enhancement of the time steps.
For example, if Γν is independent of time we simply have

τ = − 1
Γν

ln η. (47)

In the case of a time dependent rate Γν(t) it may well
happen that the exponent in equation (41) is bounded
from below and that, therefore, the exponential function
converges to a finite value q > 0 as τ goes to infinity. For
such a case one distinguishes two cases. For η > q one
determines τ from equation (41), while for η < q one sets
τ = ∞ in which case there will be no further jumps. An
example of this latter case will be shown in Section 3.2.

Finally we remark that for a numerical implementation
of the simulation algorithm it might be more convenient
to employ a PDP with time independent rates Γν . To this
end, one replaces the stochastic differential equations (29)
and (30) by

dψν =
∑

α

(−iAα√
Γαν

− I

)
ψνdNαν(t), (48)

dχν = Γνχνdt+
∑

α

(
Bα√
Γαν

− I

)
χνdNαν(t), (49)

with an appropriate choice for constant rates Γαν . The
advantage of this method is that the random waiting time
is then always given by the simple expression (47). The
size of the statistical fluctuations, however, can depend
considerably on the choice of the Γαν .

2.3.2 Estimation of observables

Suppose one has generated, by means of the algorithm
described above, a sample consisting of N realizations of
the process labeled by an index r,

|Φr
ν(t)〉 = ψr

ν(t) ⊗ χr
ν(t), r = 1, 2, ...,N . (50)

The quantum expectation value

O(t) = tr{Ôρ(t)} = E
(
〈Φ2(t)|Ô|Φ1(t)〉

)
(51)

of an observable Ô of the total system can then be esti-
mated with the help of the ensemble average

O1(t) =
1
N

∑

r

〈Φr
2(t)|Ô|Φr

1(t)〉. (52)

In view of equation (1) the reduced system’s density ma-
trix ρS(t) is given through the ensemble mean

ρS(t) =
1
N

∑

r

|ψr
1(t)〉〈ψr

2(t)|〈χr
2(t)|χr

1(t)〉. (53)

As emphasized already, the |Φν(t)〉 evolve independently.
Thus, if |Φ1(0)〉 and |Φ2(0)〉 are independent, as it is
the case for a sharp initial value, for example, the pro-
cesses |Φ1(t)〉 and |Φ2(t)〉 are statistically independent.

This implies that equation (51) can also be written in the
following equivalent way,

O(t) = 〈Ψ2(t)|Ô|Ψ1(t)〉, (54)

where |Ψν(t)〉 = E(|Φν(t)〉). This suggests estimating the
quantum expectation value (51) by means of the alterna-
tive expression

O2(t) =
1
N 2

∑

r,r′
〈Φr

2(t)|Ô|Φr′
1 (t)〉. (55)

Of course, the formulae (52) and (55) lead to the same
results in the limit of an infinite number of realizations.
However, for a finite sample the statistical errors may dif-
fer considerably.

To illustrate the difference between the statistical es-
timates given by (52) and (55), it suffices to consider
the case Ô = |ϕ〉〈ϕ|, where |ϕ〉 may be any fixed state
of the total system. We introduce the random quantities
a = 〈ϕ|Φ1〉 and b = 〈ϕ|Φ2〉, as well as the corresponding
realizations ar = 〈ϕ|Φr

1〉 and br = 〈ϕ|Φr
2〉. Equation (52)

can then be written as

O1 =
1
N

∑

r

b∗rar. (56)

The corresponding statistical error is provided by the ex-
pression

σ1 =

√
Var(a)
N

√
Var(a) + 2|E(a)|2, (57)

where
Var(a) ≡ E(a∗a) − |E(a)|2 (58)

is the variance of a, which is equal to the variance of b.
On the other hand, equation (55) leads to the

expression

O2 =
1
N 2

∑

r,r′
b∗rar′ . (59)

The usage of this formula for the estimation of O is more
efficient, in general, since the corresponding statistical
error

σ2 =

√
Var(a)
N

√
2|E(a)|2 (60)

is smaller than σ1. The second method based on equa-
tion (59) is thus to be preferred since it yields considerably
smaller fluctuations. This difference between both meth-
ods becomes particularly important if |E(a)|2, the quan-
tity to be estimated, is small. The simulations presented
in Sections 3.2 and 3.3, for example, have been carried out
using this second method.

2.3.3 Quantum correlation functions

The fact that the stochastic method involves a pair of
random wave functions also enables the design of an ex-
act method for the determination of multitime correlation
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functions. The underlying idea is similar to the one em-
ployed in [22] for the calculation of correlation functions
of quantum Markov processes.

We restrict the discussion to the case of an arbitrary
two-time correlation function of the form 〈X(t)Y (0)〉. In
the interaction picture we can write (assuming t ≥ 0)

〈X(t)Y (0)〉 = tr
(
X(t)U(t)Y (0)ρ(0)U †(t)

)

= E
(〈Φ2(t)|X(t)|ΦY

1 (t)〉) , (61)

where X(t) and Y (t) are arbitrary operators in the in-
teraction picture, and U(t) denotes the interaction pic-
ture time evolution operator of the total system over
time t. The second line in equation (61) provides the
stochastic representation of the quantum correlation func-
tion. In this expression both |ΦY

1 (t)〉 and |Φ2(t)〉 follow
the stochastic dynamics developed in Section 2.1. How-
ever, while the initial state of |Φ2(t)〉 is |Φ2(0)〉, the
stochastic process |ΦY

1 (t)〉 evolves from the new initial
state |ΦY

1 (0)〉 = Y (0)|Φ1(0)〉. With this modification the
stochastic algorithm for the determination of the correla-
tion function is the same as above. The method can easily
be generalized to the case of multitime correlation func-
tions. An example will be studied in Section 3.2.

3 Decay into a bosonic reservoir

To illustrate the general method developed in Section 2 we
first study the model of a two-state system with excited
state |e〉, ground state |g〉, and corresponding transition
frequency ω0. This system is coupled to a bosonic reser-
voir consisting of field modes which will be labeled by an
index k. The corresponding field operators that annihilate
and create particles of frequency ωk are denoted by bk
and b†k, respectively. The interaction picture Hamiltonian
is taken to be of the form

HI(t) = σ+B(t) + σ−B†(t). (62)

The operators σ+ = |e〉〈g| and σ− = |g〉〈e| are the raising
and lowering operators of the two-state system, while the
reservoir operator B(t) is given by

B(t) =
∑

k

gkbke
i(ω0−ωk)t, (63)

with mode-dependent coupling constants gk. As a simple
example we investigate the initial state

|Φν(0)〉 = ψ(0) ⊗ χ(0) = |e〉 ⊗ |0〉, (64)

where |0〉 denotes the vacuum state of the reservoir. This
initial state is statistically sharp and corresponds to the
density matrix ρ(0) = |e〉〈e| ⊗ |0〉〈0| of the total system.
This model can be solved analytically. The central physi-
cal quantity that determines the influence of the reservoir
modes on the reduced system dynamics is provided by the
bath correlation function

f(t′ − t) = 〈0|B(t′)B†(t)|0〉
=

∫
dωJ(ω) exp[i(ω0 − ω)(t′ − t)], (65)

which has been expressed here in terms of the spectral
density J(ω).

3.1 Description of the algorithm

In the notation of Section 2.1 we have α = 1, 2 and
A1 = σ+, A2 = σ−, B1(t) = B(t) and B2(t) = B†(t).
The application of the general technique of Section 2.3.1
to the present case leads to the following algorithm of sim-
ulating the stochastic dynamics.

After an even number of jumps the reservoir state χν

is proportional to the vacuum state. We thus infer from
equation (31) that the transition rates are given by

Γν(t′) =
||B†(t′)χν(t′)||

||χν(t′)|| = ||B†(t′)|0〉|| =
√
f(0). (66)

Since these rates are constant in time the random time
step τ is determined by equation (47), that is τ =
− ln η/

√
f(0) with a uniform random number η in the

interval (0, 1). Suppose that the previous jump took place
at time t. Over the time interval [t, t+τ ] the state χν then
changes continuously according to

χν(t′) = χν(t)eΓν (t′−t), t ≤ t′ ≤ t+ τ, (67)

until at time t+ τ the jumps described in equations (45)
and (46) occur,

ψν(t+ τ) −→ −iσ−ψν(t+ τ), (68)

χν(t+ τ) −→ B†(t+ τ)√
f(0)

χν(t+ τ). (69)

Note, in particular, that χν jumps into a 1-particle state.
After an odd number of jumps the reservoir state χν

represents a 1-particle state which was created out of the
field vacuum at the time t of the last jump. Invoking again
equation (31) we find that the transition rates are now
given by

Γν(t′) =
||B(t′)χν(t′)||

||χν(t′)|| =
||B(t′)B†(t)|0〉||

||B†(t)|0〉||
=

|f(t′ − t)|√
f(0)

· (70)

We observe that these rates are time dependent such that
the random time step τ as well as the deterministic drift
of χν must be determined from equations (41) and (43),
respectively. In the present case we thus have

η = exp
(
−

∫ τ

0

ds|f(s)|/
√
f(0)

)
, (71)

and

χν(t′) = χν(t) exp

(∫ t′−t

0

ds|f(s)|/
√
f(0)

)
. (72)
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Finally, the jumps at time t+ τ take the form:

ψν(t+ τ) −→ −iσ+ψν(t+ τ), (73)

χν(t+ τ) −→
√
f(0)

|f(τ)| B(t+ τ)χν(t+ τ). (74)

At time t + τ the environment thus jumps back into a
state which is proportional to the vacuum state. In terms
of χ̃ν(t), which is defined to be the reservoir state just
before the previous jump at time t, we can write the tran-
sition (74) as

χν(t+ τ) −→ f(τ)
|f(τ)| χ̃ν(t) exp

(∫ τ

0

ds|f(s)|/
√
f(0)

)
.

(75)
This algorithm will be applied in the following two sections
to the damped Jaynes-Cummings model on resonance and
with a finite detuning.

The analytical solution of the model can be expressed
in terms of an integro-differential equation involving the
correlation function f(t − t′) as a memory kernel. This
equation can of course be solved formally with the help of
a Laplace transformation. For an arbitrary spectral den-
sity it could however be difficult to carry out the inverse
transformation, in particular for short interaction times.
We stress that the stochastic simulation can be performed
for any spectral density: the above algorithm only requires
that the corresponding correlation function is known, ei-
ther analytically or numerically.

3.2 Damped Jaynes-Cummings model on resonance

The spectral density of the damped Jaynes-Cummings
model on resonance is given by

J(ω) =
1
2π

γ0λ
2

(ω0 − ω)2 + λ2
, (76)

which yields the bath correlation function

f(t′ − t) =
1
2
γ0λe

−λ|t′−t|. (77)

This model can be used to describe the coupling of a two-
level atom to an electromagnetic cavity mode which in
turn is coupled to the continuum of modes of the electro-
magnetic field vacuum. The quantity λ−1 is the correlation
time of the reservoir, while γ−1

0 can be interpreted as the
Markovian relaxation time of the open system.

The application of the simulation algorithm detailed
in Section 3.1 to this situation is straightforward. In par-
ticular, we note that according to equations (70) and (77)
the waiting time distribution (40) after an odd number of
jumps takes the form

F (τ) = 1 − exp
(
−

√
γ0

2λ
[
1 − e−λτ

])
. (78)

Hence, the probability that no further jumps occur equals

q = 1 − lim
τ→∞F (τ) = exp

(
−

√
γ0

2λ

)
· (79)
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Fig. 1. Excited state probability p(t) (Eq. (81)) of the damped
Jaynes-Cummings model. Symbols: Monte Carlo simulations
of the stochastic differential equations (29) and (30) with
N = 5 × 106 realizations for the parameters λ−1 = 5γ−1

0 (di-
amonds) and λ−1 = 20γ−1

0 (squares). The corresponding an-
alytical solutions are given by the continuous and the broken
line.

This means that in the case η < q no further jumps occur,
while in the case η > q the random time step is determined
by equation (71) which yields

τ = − 1
λ

ln

(
1 +

√
2λ
γ0

ln η

)
. (80)

Results of Monte Carlo simulations of the damped Jaynes-
Cummings model are presented in Figure 1, which shows
the population of the excited state,

p(t) = E (〈e|ψ1〉〈ψ2|e〉〈χ2|χ1〉) , (81)

estimated from a sample of realizations of the stochastic
process using the estimator described by equation (59).
As can be seen from the figure, the simulation results
reproduce the analytical curves with high accuracy. We
note that for the parameter values chosen the reservoir
correlation time λ−1 is larger than the reduced system’s
Markovian relaxation time γ−1

0 . We therefore observe a
pronounced non-Markovian behavior and large deviations
form the Born-Markov dynamics. For small and intermedi-
ate couplings, the open system dynamics derived from the
model described by the interaction Hamiltonian (62) and
initial conditions (64) satisfies a time-local master equa-
tion of the form ρ̇S(t) = K(t)ρS(t) with a time dependent
superoperator K(t). However, the TCL expansion of the
generator K(t) breaks down in the strong coupling regime
given by λ−1 > γ−1

0 /2 for times t > t0, where t0 denotes
the first positive zero of p(t). Beyond the singularity at
t = t0 the TCL expansion of the master equation is there-
fore not capable of describing the reduced system dynam-
ics which develops a long memory time of the order t0.
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Fig. 2. The correlation function c(t) (Eq. (82)) of the damped
Jaynes-Cummings model: analytical solution (continuous line)
and Monte Carlo simulation of the stochastic differential equa-
tions (29) and (30) (diamonds) for λ−1 = 5γ−1

0 and N = 107

realizations.

However, as is exemplified in the figure, the stochastic sim-
ulation is seen to describe correctly the full non-Markovian
behavior of the reduced system even in the strong coupling
regime.

To give an example of the simulation of correlation
functions we investigate the quantity 〈σ+(t)σ−(0)〉 which
can be determined with the help of the method described
in Section 2.3.3. Figure 2 shows the simulation results for
the quantity

c(t) ≡ e−iω0t〈σ+(t)σ−(0)〉, (82)

which again nicely fit the analytical curve.

3.3 Jaynes-Cummings model with detuning

If the cavity mode is detuned from the atomic transition
frequency by an amount ∆ the spectral density becomes

J(ω) =
1
2π

γ0λ
2

(ω0 −∆− ω)2 + λ2
, (83)

which leads to the reservoir correlation function

f(t′ − t) =
1
2
γ0λe

i∆(t′−t)−λ|t′−t|. (84)

We can again use the simulation algorithm described in
Section 3.1, although, by contrast to the previous case,
the correlation function (84) is a complex-valued function.
Since the transition rates and the deterministic drift of the
process depend on the absolute value of f , the only mod-
ification of the algorithm for the resonant case appears
in equation (75) which describes the even jumps into the
vacuum state.
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0
 t

Fig. 3. The excited state probability p(t) (Eq. (81)) of the
damped Jaynes-Cummings model with detuning: analytical so-
lution (continuous line) and Monte Carlo simulation of the
stochastic differential equations (29) and (30) (dots and error-
bars) for λ−1 = 5γ−1

0 , ∆ = γ0 and N = 107 realizations.

An example of the simulation results is shown in Fig-
ure 3. The detuning ∆ influences both the coherent dy-
namics of the system as well as the dissipation mechanism.
This leads to a slower decay and to an oscillatory behavior
of the excited state probability, which is correctly repro-
duced by the stochastic simulation.

4 Interaction with a spin bath

The stochastic method developed in Section 2 is not re-
stricted to the treatment of bosonic reservoirs. It is also
applicable to the dynamics of open systems coupled to spin
environments. As an example, we examine here a specific
central spin model which may be used to model the inter-
action of a single electron spin confined to a quantum dot
with a bath of nuclear spins [23].

4.1 Description of the model

The model is defined by the total Hamiltonian

H =
ω0

2
σ3 +

N∑

i=1

A(i)σ · σ(i). (85)

The central spin is represented by the Pauli spin oper-
ator σ, while the N bath spins are given by the spin
operators σ(i) with i = 1, 2, ..., N . The coupling of the
central spin to the ith bath spin is described by the con-
stant A(i). For simplicity, the coupling constants are taken
to be A(i) = A/

√
N = const in the following. The cor-

responding interaction picture Hamiltonian can be writ-
ten as

HI(t) = σ3B3(t) + σ+B−(t) + σ−B+(t) (86)
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with

B3 =
∑

i

A(i)σ
(i)
3 , (87)

B± =
∑

i

2A(i)σ
(i)
± e∓iω0t. (88)

Our aim is to determine the coherence of the central spin,

ρ+−(t) = 〈+|ρS(t)|−〉, (89)

where |±〉 are the eigenstates of the 3-component σ3 of the
central spin σ with eigenvalues ±1. Within the stochastic
simulation technique this quantity is represented through
the expectation value (see Eq. (1))

ρ+−(t) = E (〈+|ψ+〉〈ψ−|−〉〈χ−|χ+〉) , (90)

where we write here |Φν〉 ≡ |Φ±〉 = ψ± ⊗ χ± for the
stochastic states, that is the index ν takes on the values
ν = ±. The initial state is taken to be

ρ(0) = |+〉〈−| ⊗ 1
2N

IE . (91)

IE denotes the unit matrix in the 2N -dimensional state
space HE of the spin bath. The spin bath is thus in an
unpolarized initial state.

4.2 Simulation algorithm and results

To apply the simulation technique it is useful to realize
the unpolarized initial state 2−NIE of the spin bath with
the help of an appropriate set of basis states of the Hilbert
space HE spanned by the N bath spins. To this end, we
introduce states |j,m〉 which are defined as simultaneous
eigenstates of the square J2 of the total spin angular mo-
mentum J of the bath and of its 3-component J3. The
initial state can then be represented by

|Φ±(0)〉 = |±〉 ⊗ |j,m〉 (92)

with an appropriate probability distribution of the corre-
sponding quantum numbers j and m which will be con-
structed below.

The state |Φ±(0)〉 defined in (92) is an eigenstate of
the 3-component σ3/2 + J3 of the total spin angular mo-
mentum, which is a conserved quantity, corresponding to
the eigenvalue (±1 + 2m)/2. This fact enables us to carry
out the canonical transformation |Φ±(t)〉 −→ |Φ̃±(t)〉 de-
fined by

|Φ±(t)〉 = exp
[−iAt√

N
((±1 + 2m)σ3 − 1)

]
|Φ̃±(t)〉, (93)

which transforms the interaction Hamiltonian (86) into

H̃I(t) = σ+B−(t) + σ−B+(t). (94)

In this equation the B±(t) are given again by equa-
tion (88), where, however, ω0 must be replaced by the
new frequencies ω±:

ω0 −→ ω± = ω0 +
2A√
N

(±1 + 2m). (95)

In terms of the stochastic states |Φ̃±〉 = ψ̃± ⊗ χ̃± the co-
herence of the central spin is then given by the expectation
value

ρ+−(t) = E
(
e−4iAmt/

√
N 〈+|ψ̃+〉〈ψ̃−|−〉〈χ̃−|χ̃+〉

)
. (96)

Summarizing, we can simulate, employing the method de-
veloped in Section 2, the stochastic dynamics correspond-
ing to the new interaction Hamiltonian (94) and estimate
the coherence by means of the formula (96). The canon-
ical transformation (93) is accounted for in this formula
by the exponential factor exp[−4iAmt/

√
N ].

In order to see more explicitly how the method works
it may be instructive at this point to consider first the sim-
pler model obtained by omitting the terms σ±B∓(t) of the
interaction Hamiltonian (86). The transformed Hamilto-
nian (94) is then identically zero and the expression (96)
for the coherence of the central spin becomes

ρ+−(t) = E
(
e−4iAmt/

√
N

)
=

+N/2∑

m=−N/2

pme
−4iAmt/

√
N ,

(97)
where pm is the probability of finding a basis state with
quantum number m in the unpolarized initial mixture.
Since all basis states are equally likely in this initial mix-
ture, pm is found to be

pm =
1

2N

(
N

N
2 +m

)
. (98)

Here, 2N is the total number of basis states of the bath
of N spins (the dimension of HE), while the binomial co-
efficient counts the number of basis states corresponding
to a given value of m. The summation in equation (97)
can easily be carried out to give

ρ+−(t) =
[
cos

(
2At√
N

)]N

, (99)

which is the exact expression for the coherence of the cen-
tral spin. We note that this expression may be approxi-
mated by

ρ+−(t) = e−2A2t2 (100)

in the limit of a large number of bath spins, N −→ ∞,
showing an exponential decay of the coherence of the cen-
tral spin. Thus we see that the stochastic simulation for
this simplified model reduces to the generation of a bino-
mially distributed random number m and to the estima-
tion of the expectation value (97).

We turn again to the discussion of the full model de-
scribed by the Hamiltonian (86). Employing the method
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described above and using the transformed interaction
Hamiltonian (94) we see that the simulation algorithm is
quite similar to the one used already in the bosonic case.
In fact, the simulation technique turns out to be even sim-
pler. Suppose we have drawn the initial state |±〉⊗ |j,m〉.
The bath state χ̃±(t) then jumps between states which are
proportional to |j,m〉 and |j,m ± 1〉. The corresponding
jump rate

Γ± = 2A

√
j(j + 1) −m(m± 1)

N
(101)

is independent of time. The waiting time of the PDP is
therefore always exponentially distributed, which makes
the numerical implementation particularly easy for this
case. A detailed analysis of the process reveals that the co-
herence can be represented through the expectation value

ρ+−(t) = E
(
e−4iAmt/

√
N (−1)(k++k−)/2e(Γ++Γ−)t

× exp
(
iω+

(
τ+
2 + τ+

4 ...+ τ+
k+

))

× exp
(
iω−

(
τ−2 + τ−4 ...+ τ−k−

)))
. (102)

Here, τ±2n denotes the random time step before the 2nth
jump of |Φ̃±〉, while Γ± and ω± have already been defined
in equations (101) and (95). The quantity k± is defined
as the total number of jumps of |Φ̃±(t)〉 during the time
interval from 0 to t. The integers k± may be supposed to
be even since only trajectories with an even number of
jumps contribute to the expectation value (102).

It remains to explain how to generate, in the general
case, the initial states |j,m〉 in equation (92). More pre-
cisely, these states should be written as |λ, j,m〉, where λ
stands for an additional quantum number which, together
with j and m, uniquely fixes the basis state. The quan-
tum number λ corresponds to further observables of the
spin bath which commute with J. If N is even j takes on
the values j = 0, 1, 2, ..., N/2, while j = 1/2, 3/2, ..., N/2
if N is odd. For a given value of j the quantum number m
takes on the values m = −j,−j + 1, ...,+j.

In order to achieve that the initial ensemble represents
the unpolarized bath state, that is

E(|λ, j,m〉〈λ, j,m|) =
1

2N
IE , (103)

all basis states |λ, j,m〉 must occur with the same proba-
bility of 2−N . Since the value of the quantum number λ is
irrelevant in the simulation scheme, we need the probabil-
ity P (j,m) of finding the pair of quantum numbers (j,m)
in the initial ensemble. This probability can be written as

P (j,m) = 2−NaN
j . (104)

The quantity aN
j denotes the number of times a given an-

gular momentum j appears in the decomposition of the
Hilbert space HE of N spins into irreducible subspaces of
the rotation group. Since a certain j-manifold consists of
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Fig. 4. Real part of the coherence (89) of the central spin in-
teracting with a spin bath through the Hamiltonian (86) with
N = 103. Symbols: Monte Carlo simulation of the stochastic
differential equations (29) and (30) using N = 2× 107 realiza-
tions for the parameters A/ω0 = 0.1 (diamonds), A/ω0 = 0.2
(squares), and A/ω0 = 10 (triangles). Continuous lines: cor-
responding solutions of the von Neumann equation (3). The
dashed line (A/ω0 = 0.1), the dashed-dotted line (A/ω0 = 0.2),
and the dotted line (A/ω0 = 10) show the results obtained
from the TCL master equation in second order (Eqs. (108)
and (109)).

(2j + 1) states, distinguished by their values of the quan-
tum number m, we can also say that (2j + 1)aN

j is equal
to the number of independent ways the N bath spins can
be coupled to give the total angular momentum j. For ex-
ample, the Hilbert space of N = 4 spins decomposes into
two (j = 0)-manifolds, three (j = 1)-manifolds, and one
(j = 2)-manifold, that is we have a4

0 = 2, a4
1 = 3, and

a4
2 = 1. A general formula for aN

j is given by

aN
j =

(
N

N
2 + j

)
−

(
N

N
2 + j + 1

)
. (105)

A proof of this relation can be found in [24,25]. We remark
that reference [24] contains further relations which could
be useful in the treatment of polarized initial states.

The distribution P (j,m) is normalized,

∑

j

+j∑

m=−j

P (j,m) = 1, (106)

and does of course not depend on m. In summary, the
quantum numbers (j,m) of the initial ensemble follow
the distribution P (j,m) given by the expressions (104)
and (105). In the stochastic simulation algorithm one
therefore has to generate a sample of random num-
bers (j,m) with this distribution, which is easily done
making use of the inversion method, for example.

Examples of Monte Carlo simulations of the central
spin model are shown in Figure 4. One observes that the
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Fig. 5. Statistical errors σ(t) of Monte Carlo simulations of
the central spin model with 107 realizations, A/ω0 = 0.5 and
three different values of the number of bath spins: N = 10
(diamonds), N = 100 (squares), and N = 1000 (triangles). The
continuous line shows the estimate given by equation (111).

PDP reproduces the von Neumann dynamics with high ac-
curacy. We do not show errorbars in the figure because the
statistical errors are smaller than the size of the symbols.
The figure also displays the results found with the help of
the second-order TCL master equation of the central spin
which is given by

d

dt
ρS = −2iA2 1 − cosω0t

ω0
[σ3, ρS] −A2t[σ3, [σ3, ρS ]]

+ 4A2 sinω0t

ω0

(
σ−ρSσ+ − 1

2
{σ+σ−, ρS}

+σ+ρSσ− − 1
2
{σ−σ+, ρS}

)
. (107)

The solution of this master equation is easily constructed.
It yields the expression

ρ+−(t) = exp[−Γ (t)]ρ+−(0) (108)

for the coherence of the central spin, where

Γ (t) =
4iA2t

ω0

(
1 − sinω0t

ω0t

)

+2A2t2
(

1 + 2
1 − cosω0t

(ω0t)2

)
· (109)

For the parameter values chosen the exact dynamics of
the central spin is seen to deviate significantly from the
one predicted by the second-order TCL master equation.

Figure 5 presents an example of the behavior of the
fluctuations of the stochastic process. The figure shows a
plot of the statistical errors σ(t) of three Monte Carlo sim-
ulations with a fixed number N of realizations, but with
three different values of the number N of bath spins. We

conclude from the figure that, within the range of time
investigated, σ(t) is roughly independent of N . To un-
derstand this behavior we refer to expression (102) which
yields

σ(t) ≤
√

E (exp[2(Γ+ + Γ−)])
N · (110)

The right-hand side of this inequality may be estimated by
replacing the random quantities Γ± by suitable averages
using the distribution (104). This gives the estimate

σ(t) ∼ exp[4At]√N · (111)

This expression is indeed independent of N and provides
a good estimate of the standard error in the given time
interval, as can be seen from the figure. Moreover, this
result implies that the fluctuations grow with a rate which
is much smaller than the one provided by the strict upper
bound 2Γ0 of Γ+ + Γ−. In fact, Γ0 scales with the square
root of N which predicts a much stronger increase of the
fluctuations.

5 Conclusions

It has been shown in this paper that the von Neumann
dynamics of a combined quantum system can be formu-
lated in terms of a rather simple piecewise deterministic
process which gives rise to a powerful and efficient Monte
Carlo simulation method of the exact non-Markovian re-
duced system behavior. A Markovian representation of the
dynamics was achieved through the use of a pair of prod-
uct states ψν ⊗ χν in the state space of the total system.
The stochastic propagation of an ensemble of such pairs
then enables one to mimic the exact time evolution of the
reduced system’s density matrix.

The examples discussed in Sections 3 and 4 illus-
trate the generality of the method: it is applicable to
both bosonic and spin environments and is not restricted
to linear dissipation or to a perturbation treatment of
the system-environment coupling. Most importantly, the
method does not require the derivation, not even the exis-
tence of a master equation of the reduced system. At the
same time, the technique allows the direct determination
of all kinds of multitime quantum correlation functions.
Although our discussion was carried out in the interac-
tion picture, it is obvious that the stochastic dynamics
can also be formulated in the Schrödinger picture, in which
case both ψν and χν follow, in general, a non-trivial deter-
ministic evolution. Furthermore, it should be clear that,
instead of using a PDP, one can also employ a diffusion
process (Brownian motion) to construct an unraveling of
the von Neumann equation.

The stochastic technique has been formulated here as
a method of simulating the dynamics of open systems in
real time. A potential extension of the method is to re-
formulate the dynamics in imaginary time [26], in order to
determine the properties of the system in thermodynamic
equilibrium. With the total Hamiltonian

H = HS +HE +HI (112)
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in the Schrödinger picture the canonical equilibrium den-
sity matrix (not normalized) is given by ρ(β) = e−βH ,
where β = 1/kBT is the inverse temperature. At infinite
temperature we have ρ(β = 0) = I. This suggests deter-
mining the equilibrium density at finite temperature by
solving the evolution equation

d

ds
ρ(s) = −1

2
{H, ρ(s)} (113)

over the interval from s = 0 to s = β. This imaginary-
time dynamics can again be represented in terms of a
stochastic process for a pair of product states |Φν(s)〉 =
ψν(s)⊗χν(s). An appropriate system of stochastic differ-
ential equations in the Schrödinger picture is given by

dψν = −1
2
HSψνds

+
∑

α

(
−1

2
LανAα − I

)
ψνdNαν , (114)

dχν =
(
−1

2
HE + Γν

)
χνds

+
∑

α

(MανBα − I)χνdNαν . (115)

Performing a calculation analogous to the one of Sec-
tion 2.1 it is easy to verify that the expectation value
ρ(s) = E(|Φ1(s)〉〈Φ2(s)|) satisfies the evolution equa-
tion (113). The dNαν(s) are again independent Poisson
increments satisfying E(dNαν(s)) = Γανds, and the rela-
tions (22) and (23) remain valid.

An important restriction of the Monte Carlo technique
is provided by the behavior of the statistical fluctuations.
The considerations of Section 2.2 as well as the example
discussed in Section 4.2 reveal that the method as formu-
lated in Section 2.1 is feasible, in general, only for short
and intermediate time scales. For large times statistical er-
rors may grow exponentially fast, ruling out the estimation
of statistical quantities with reasonable effort. However, in
the construction of a stochastic dynamics we have used the
assumption that the stochastic states |Φν(t)〉 are tensor
products of certain system and environment states. This
leads to a further potential generalization of the method,
namely to introduce a class of stochastic states with a
more complicated structure, the aim being a more effi-
cient representation of ρ(t) as the expectation value over
the corresponding random process.

Since the interaction generally creates correlations be-
tween the states of system and environment it could be
advantageous, e.g., to use a class of entangled stochastic
states. The spin bath model studied in Section 4.2 leads
to a trivial example. The class of entangled states defined
by (α and β are complex amplitudes)

α|+〉 ⊗ |j,m〉 + β|−〉 ⊗ |j,m+ 1〉 (116)

yields a very simple stochastic representation of the dy-
namics: the subspaces Mj,m which are spanned by the
states |+〉 ⊗ |j,m〉 and |−〉 ⊗ |j,m + 1〉 are invariant un-
der the time evolution and, thus, the dynamics can be

expressed entirely though an appropriate (deterministic)
time dependence of the amplitudes α and β. Therefore,
only the initial state is a random quantity and the sta-
tistical errors are constant in time. It must be noted that
the invariance of the two-dimensional manifolds Mj,m is
connected to the fact that for i-independent couplings
(A(i) = const in Eq. (85)) not only σ3/2 + J3 but also J2

is a conserved quantity. In the physically relevant generic
case of i-dependent coupling constants J2 is not conserved
and the exact states move in spaces of higher dimension.

In a further possible extension of the method one could
employ a stochastic evolution of mixed states instead of
pure states. As an example we introduce a stochastic
matrix

R(t) = |ψ1(t)〉〈ψ2(t)| ⊗RE(t), (117)

where the ψν(t) are random states of the open system
and RE(t) is a random operator in HE , and try again
to find stochastic evolution equations such that the ex-
act von Neumann dynamics is recovered by means of the
expectation value ρ(t) = E(R(t)). This is indeed possi-
ble if we use the stochastic differential equations (29) for
the ψν(t) and if we replace (30) by the following stochastic
differential equation for the random operator RE(t),

dRE = ΓREdt+
∑

α

(Mα1Bα − I)REdNα1

+
∑

α

RE

(
Mα2B

†
α − I

)
dNα2, (118)

where Γ = Γ1 +Γ2 =
∑

αν Γαν is the total jump rate. The
further development of the stochastic technique proposed
in this paper should include a systematic investigation of
the potentialities of the extensions indicated above.

The author would like to thank F. Petruccione for helpful dis-
cussions and comments.
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